7 research outputs found

    Simbol-X: a formation flight mission with an unprecedented imaging capability in the 0.5-80 keV energy band

    Get PDF
    The discovery of X-ray emission from cosmic sources in the 1960s has opened a new powerful observing window on the Universe. In fact, the exploration of the X-ray sky during the 70s-90s has established X-ray astronomy as a fundamental field of astrophysics. Today, the emission from astrophysical sources is by large best known at energies below 10 keV. The main reason for this situation is purely technical since grazing incidence reflection has so far been limited to the soft X-ray band. Above 10 keV all the observations have been obtained with collimated detectors or coded mask instruments. To make a leap step forward in Xray astronomy above 10 keV it is necessary to extend the principle of focusing X ray optics to higher energies, up to 80 keV and beyond. To this end, ASI and CNES are presently studying the implementation of a X-ray mission called Simbol-X. Taking advantage of emerging technology in mirror manufacturing and spacecraft formation flying, Simbol-X will push grazing incidence imaging up to 80 keV and beyond, providing a strong improvement both in sensitivity and angular resolution compared to all instruments that have operated so far above 10 keV. This technological breakthrough will open a new highenergy window in astrophysics and cosmology. Here we will address the problematic of the development for such a distributed and deformable instrument. We will focus on the main performances of the telescope, like angular resolution, sensitivity and source localization. We will also describe the specificity of the calibration aspects of the payload distributed over two satellites and therefore in a not "frozen" configuration

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    SIMBOL-X: An hard X-ray formation flying mission

    No full text

    The DRE, the digital readout electronics for Athena X-IFU

    No full text
    Event: SPIE Astronomical Telescopes + Instrumentation, 2014, MontrĂ©al, Quebec, Canada.We are developing the digital readout electronics (DRE) of the X-Ray Integral Field Unit (X-IFU), one of the two Athena focal plane instruments. This subsystem is made of two main parts: the DRE-DEMUX and the DRE-EP. With a frequency domain multiplexing (FDM) the DRE-DEMUX makes the readout of the 3 840 Transition Edge Sensors (TES) in 96 channels of 40 pixels each. It provides the AC signals to voltage-bias the TES, it demodulates the detector's data which are readout by a SQUID and low noise amplifiers and it linearizes the detection chain to increase its dynamic range. The feedback is computed with a specific technique, so called baseband feedback (BBFB) which ensures that the loop is stable even with long propagation and processing delays (i.e. a few ÎŒs) and with high frequency AC-bias (up to 5 MHz). This processing is partly analogue (anti aliasing and reconstruction filters) but mostly digital. The digital firmware is simultaneously applied to all the pixels in digital integrated circuits. After the demultiplexing the interface between the DRE-DEMUX and the DRE-EP has to cope with a data rate of 61.44 Gbps to transmit the data of the individual pixels. Then, the DRE-EP detects the events and computes their energy and grade according to their spectral quality: low resolution, medium resolution and high resolution (i.e. if two consecutive events are too close the estimate of the energy is less accurate). This processing is done in LEON based processor boards. At its output the DRE-EP provides the control unit of the instrument with a list including for each event its time of arrival, its energy, its location on the focal plane and its grade.Peer reviewe

    The X-ray Integral Field Unit (X-IFU) for Athena

    Get PDF
    Athena is designed to implement the Hot and Energetic Universe science theme selected by the European Space Agency for the second large mission of its Cosmic Vision program. The Athena science payload consists of a large aperture high angular resolution X-ray optics (2 m2 at 1 keV) and twelve meters away, two interchangeable focal plane instruments: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager. The X-IFU is a cryogenic X-ray spectrometer, based on a large array of Transition Edge Sensors (TES), offering 2:5 eV spectral resolution, with ~5" pixels, over a field of view of 50 in diameter. In this paper, we present the X-IFU detector and readout electronics principles, some elements of the current design for the focal plane assembly and the cooling chain. We describe the current performance estimates, in terms of spectral resolution, effective area, particle background rejection and count rate capability. Finally, we emphasize on the technology developments necessary to meet the demanding requirements of the X-IFU, both for the sensor, readout electronics and cooling chain

    The High Time Resolution Spectrometer (HTRS) aboard the International X-ray Observatory (IXO)

    No full text
    The High Time Resolution Spectrometer (HTRS) is one of the five focal plane instruments of the International X-ray Observatory (IXO). The HTRS is the only instrument matching the top level mission requirement of handling a one Crab X-ray source with an efficiency greater than 10%. It will provide IXO with the capability of observing the brightest X-ray sources of the sky, with sub-millisecond time resolution, low deadtime, low pile-up (less than 2% at 1 Crab), and CCD type energy resolution (goal of 150 eV FWHM at 6 keV). The HTRS is a non-imaging instrument, based on a monolithic array of Silicon Drift Detectors (SDDs) with 31 cells in a circular envelope and a X-ray sensitive volume of 4.5 cm2 x 450 ÎŒm. As part of the assessment study carried out by ESA on IXO, the HTRS is currently undergoing a phase A study, led by CNES and CESR. In this paper, we present the current mechanical, thermal and electrical design of the HTRS, and describe the expected performance assessed through Monte Carlo simulations
    corecore